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In this letter we discuss a phase transition-like anomalous behavior of Faraday rotation angles in a simple 
parity-time (PT ) symmetric model with two complex δ-potential placed at both boundaries of a regular 
dielectric slab. In anomalous phase, the value of one of Faraday rotation angles turns negative, and both 
angles suffer spectral singularities and yield strong enhancement near singularities.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Faraday rotation (FR) is a magneto-optical phenomenon that 
rotates the polarization of light. It occurs either due to the in-
ternal property of the medium or to the external magnetic field 
applied. In both cases, the dielectric permittivity tensor of the sys-
tem becomes anisotropic [1]. The Faraday effect shows a wide 
range of applications in various fields of modern physics, such 
as, (i) measuring magnetic field in astronomy [2]; (ii) construc-
tion of optical isolators for fiber-optic telecommunication systems 
[3]; or (iii) optical circulators that are used in the design of mi-
crowave integrated circuits [4–6]. Usually it is necessary either a 
large size or a strong external magnetic field in order to obtain 
a large FR in bulk magneto-optical materials. [7,8]. However, for 
small size systems, where the de Broglie wavelength is compatible 
with size of systems, a large enhancement of the FR and as well 
as a change in the sign of the FR can be obtained by incorporat-
ing several nanoparticles and their composites in nanomaterials, 
see e.g. Refs. [9–11]. The aim of this letter is to exhibit that the 
large enhancement of Faraday rotation and the anomalous phase 
transition-like effect may occur when the medium is parity-time 
(PT ) symmetric. Moreover, in certain range of model parameters 
of a PT -symmetric system a non-trivial transition occurs with a 
change of sign of FR. Non-triviality of the transition of FR only hap-
pens in a few well-known cases, such as (1) when the sign of the 
constant Verdet is changed or when either the magnetic field or 
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the direction of the light is reversed; (2) in a new type artificial 
left handed materials (metamaterials) with negative permittivity 
ε and permeability μ, as shown in Refs. [12–16], the sign of FR is 
negative because the refractive index n becomes negative. It should 
be noted that in metamaterials FR changes the sign only in a nar-
row frequency range, while in the PT system discussed here, the 
change occurs in a fairly large frequency range.

In recent years, numerous remarkable novel phenomena have 
been discovered within PT symmetric systems [17–24], includ-
ing real spectra of non-Hermitian operators [17,18,25,26], spectral 
singularities [27–29], the violation of the normal conservation of 
the photon flux that leads to anisotropic transmission resonances 
[30], etc. Most importantly, PT symmetric systems have been ex-
perimentally developed in optics [22–24], atomic gases [31,32], 
plasmonic waveguides [33,34] or acoustic [35].

In this letter, we illustrate that the Faraday rotation angles of 
the polarized light traveling through a PT -symmetric material 
displays phase transition-like anomalous behaviors. With a sim-
ple PT -symmetric dielectric slab model, we show that in one 
phase (normal phase), the angle of Faraday rotation behaves nor-
mally as in regular dielectric slab with a positive permittivity, and 
stay positive all the time as expected. In the second anomalous 
phase, the angle of Faraday rotation may change the sign and 
turn into negative. Two phases are separated by the parameters 
of PT -symmetric model. In addition, the spectral singularities oc-
cur in the second anomalous phase. The Faraday rotation angles 
thus yield a strong enhancement near spectral singularities. In this 
sense, PT -systems seem to be a good candidate for construct-
ing fast tunable and switchable polarization rotational ultrathin 
magneto-optical devices in a wide frequency range with a giant 
Faraday rotation.
 under the CC BY-NC-ND license 
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Fig. 1. Demo plot of a PT -symmetric dielectric slab model with two balanced com-
plex narrow slabs placed at both ends of a real dielectric slab.

2. The theory of Faraday effect in a PT -symmetric dielectric slab

Let us consider a PT -symmetric dielectric slab with a finite 
spatial extent of length L along x direction, where the permittivity 
of the slab has balanced gain and loss,

ε(x − L

2
) = ε∗(−x + L

2
). (1)

A linearly polarized electromagnetic plane wave with angular fre-
quency ω enters the slab from the left at normal incidence prop-
agating along the x direction. The polarization direction of electric 
field of incident wave is taken as the z-axis: E0(x) = eik0x ẑ, where 
k0 = ω

c
√

ε0 stands for the wave vector and ε0 denotes the dielec-
tric constant of vacuum. A weak magnetic field B , which preserves 
the linearity of Maxwell’s equations, is applied in the x-direction 
and is confined into the slab, see Fig. 1. The scattering of incident 
wave by the dielectric slab is described by Schrödinger-like equa-
tions, see e.g. Refs. [36,37],[

d2

dx2
+ ω2ε±(x)

c2

]
E±(x) = 0, (2)

where E± = E y ± iEz are circularly polarized electric fields. The 
ε±(x) is defined by, see e.g. Refs. [36,37],

ε±(x) =
{
ε(x) ± g, x ∈ [0, L],
ε0, otherwise,

(3)

where g is the gyrotropic vector along the magnetic-field direc-
tion. The external magnetic field B is included into the gyrotropic 
vector g to make the calculations valid for the cases of both ex-
ternal magnetic fields and magneto-optic materials. The magnetic 
field causes the direction of linear polarization to rotate while light 
propagates through the medium. As a consequence, the electro-
magnetic wave is elliptically polarized and the major axis of the 
ellipse is rotated with respect to the original direction of polariza-
tion. The angle of Faraday rotation, θ1, and the degree of ellipticity, 
θ2, are defined by [36,37]

θ1 = ψ+ − ψ−
2

, θ2 = 1

4
ln

T+
T−

, (4)

where T± and ψ± are the transmission coefficients and phase 
of transmission amplitudes, t± = √

T±eiψ± , of transmitted electric 
fields:

E±(x > L) = ±it±eik0x. (5)

For the dielectric material with real value of permittivity, the 
scattering S-matrix can be parameterized by two independent 
real scattering phaseshifts, δ(1/2)

± . The transmission coefficients and 
phases ψ± are given in terms of scattering phaseshifts by√

T± = cos(δ(1)
± − δ

(2)
± ), ψ± = δ

(1)
± + δ

(2)
± . (6)
2

Hence both angles θ1 and θ2 are real and well defined. As dis-
cussed in Ref. [38], for the scattering with a complex potential in 
general, scattering phaseshifts become complex. Therefore, with a 
complex dielectric slab, both θ1 and θ2 are complex in general, and 
physical meaning of both angles become ambiguous.

In a PT -symmetric system, the parameterization of scatter-
ing S-matrix now requires three independent real functions: two 
phaseshifts and one inelasticity, η± ∈ [1, ∞], see Ref. [38]. The 
phases of a PT -symmetric system, ψ(PT )

± , are still given by the 
sum of two real phaseshifts as in Eq. (6), thus it remains real. 
The transmission coefficients of PT -symmetric system also remain 
real but now depend on inelasticity as well,√

T (PT )
± = η± cos(δ(1)

± − δ
(2)
± ). (7)

Therefore, with balanced gain and loss, the reality of both Faraday 
rotation angles θ1 and θ2 is warranted in a PT -symmetric system. 
In Ref. [38], it is also shown that the generalized Friedel formula 
relates the derivative of sum of two phaseshifts, d

dω (δ
(1)
± + δ

(2)
± ) =

dψ
(PT )
±
dω , to the integrated generalized density of states of the PT -

symmetric system, which turns out to be real for a PT -symmetric 
system. Hence the reality of FR angles in a PT -symmetric sys-
tem can also be understood based on the generalized Friedel for-
mula. However, the positivity of generalized density of state in 
PT -symmetric systems is no longer guaranteed. Therefore the FR 
angles of PT -symmetric systems show an anomalous behavior be-
coming negative.

3. A simple PT -symmetric model

We use in our calculations a very simple PT -symmetric model 
to illustrate the anomalous behavior of FR angles by putting two 
complex delta potentials at both ends of the dielectric slab with a 
positive and real permittivity (ε > 0 and real),

ε(x) = ε + V δ(x) + V ∗δ(x − L), V = V 1 + iV 2 = |V |eiϕV . (8)

We adopt this model because it lets us obtain quite easily the ana-
lytical expressions, and some techniques and conclusions that were 
developed in Refs. [36,37] can be applied directly in this work. 
The PT -symmetric double complex boundaries model is similar 
to the model by considering PT -symmetric complex dielectric 
permittivities of slab: ε(x ∈ [0, L

2 ]) = ε for first half of slab and 
ε(x ∈ [ L

2 , L]) = ε∗ for another half. Both models can be solved rela-
tively easily and analytically, and both show similar anomalous be-
haviors of FR angles. No significant difference between two models 
has been observed. The basis and physical reason for this conclu-
sion is that the two-boundary model discussed in the manuscript 
can be considered as having two slabs with changeable thickness 
and potential force, so the delta potentials are the limit of the two 
finite potentials of a square. Hence we will simply present some 
results of double complex boundaries model, and it is sufficient 
to show anomalous behavior of Faraday rotation angles in PT -
symmetric systems.

For weak magnetic field (g � 1) and constant dielectric per-
mittivity in the slab, the Faraday rotation angles in Eq. (4) can be 
evaluated in terms of perturbation expansion of the weak magnetic 
field. The leading order expressions are obtained in Refs. [36,37]
and are given by

θ1 = g

2n

∂ψ

∂n
, θ2 = g

4n

∂ ln T

∂n
, (9)

where n = √
ε is the refractive index of the slab. The T and ψ

stand for the coefficient of transmission and the phase in the ab-
sence of the external magnetic field B . The conclusion in Eq. (9)
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also apply to double complex boundaries PT model in Eq. (8). 
For the simple double complex boundaries PT -symmetric model, 
the transmission amplitude, t = √

T eiψ , can be easily obtained by 
matching boundary conditions method. Hence we find

t(ω) = e−ik0 L csc(kL)

R(ω) − i I(ω)
, (10)

where

R(ω) = cot(kL) − Z
ωV 1

cn0
,

I(ω) = ωV 1

cn0
cot(kL) +

1 + Z 2
(

1 − (
ω|V |
cn0

)2
)

2Z
. (11)

Z =
√

ε0
ε = n0

n is the “relative” impedance of the dielectric slab, 
and k = ω

c n denotes the wave vector of propagating waves inside 
the dielectric slab. The transmission amplitude t can also be ob-
tained by the Green’s function approach [39]. We remark that the 
Green’s function approach is a better tool for more sophisticated 
multilayer systems, which is based on the exact calculation of the 
Green’s function (GF) of a photon for a given dielectric permittiv-
ity profile ε(x). The GF approach is compatible with the transfer 
matrix method and has been widely used to calculate the average 
density of states over a sample, the energy spectrum of elementary 
excitations [39], or the characteristic barrier tunneling time [40], 
among others. The coefficient of transmission T and the phase ψ
are thus explicitly given by

T (ω) = csc2(kL)

R2(ω) + I2(ω)
, ψ(ω) = tan−1

[
I(ω)

R(ω)

]
. (12)

We remark that unphysical units are adopted in this work for a 
simple model: the length of slab L is used to sent up the physical 
scale, V and ε = n2 carry the dimensions of 1/L and 1/L2 respec-
tively. The ω/c is hence a dimensionless quantity.

3.1. Spectral singularities

The resonance states with vanishing spectral width appear in 
non-Hermitian complex potential scattering theory and yield di-
vergences of reflection and transmission coefficients of scattered 
states, which are usually referred as spectral singularities, see e.g. 
Refs. [27–29]. Therefore, near spectral singularities it should be 
expected a strong enhancement of both Faraday rotation angles. 
Specifically, for the double complex boundaries PT -symmetric 
model considered in this letter, the spectral singularities occur 
when both conditions, R(ω) = 0 and I(ω) = 0, are satisfied. Hence 
the solutions of spectral singularities can be obtained by

(
1 + 1+cot2(kL)

Z 2

1 + 1+2 cot2(kL)

Z 2

,
1 + 1+2 cot2(kL)

Z 2

( ω
cn0

)2
) = (sin2 ϕV , |V |2). (13)

Since the left-hand side of the first condition in Eq. (13) is confined 
to the range [ 1

2 , 1], the spectral singularities exist only when the 
phase angle ϕV is in the range [π

4 , π2 ] or [π
2 , 3π

4 ]. Henceforth, all 
discussions will be for the range: ϕV ∈ [0, π2 ], which is sufficient 
due to the symmetry of our model.

The solutions of spectral singularities on real ω axis can be vi-
sualized graphically by observing the intersection of a curve and a 
line with (x, y) coordinates given by both sides of Eq. (13) for a 
fixed |V |, see Fig. 2 as a example. The curve that is plotted with 
coordinates given by left-hand side of Eq. (13) as function of ω
is bound in the region with x ∈ [ 1

2 , 1]. For a fixed |V |, the solu-
tions of spectral singularities can only be found in a finite range: 
3

Fig. 2. Spectral singularities condition plot: the parametric plot of solid red curve is 
generated with (x, y) coordinates given by left-hand side of Eq. (13) as the function 
of ω/c ∈ [0, 10]. The solid red curve is bound by two blue vertical lines located at 
x = 1

2 and x = 1. The solid black line is generated with coordinates of (sin2 ϕV , |V |2)

by varying ϕV in the range of [0, π4 ] (dashed black), [ π
4 , ϕc] (solid black) and 

[ϕc , π2 ] (dashed black). The arrows indicate increasing ω and ϕV directions. The 
value of ω of spectral singularities for fixed V is given by intersection of black line 
and red curve. The model parameters are chosen as: |V | = 0.9, n0 = 1, L = 1 and 
Z = 0.7. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

ϕV ∈ [π
4 , ϕc], where ϕc stands for upper bound of range, see e.g. 

Fig. 2. From Eq. (13), the spectral singularity solutions ω is related 
to ϕV by ω/c = n0|V |Z

1√| cos(2ϕV )| . Hence as ϕV approaches lower 
bound of range at π

4 , the spectral singularity solution occurs at 
large frequency: ω → ∞. When ϕV is increased, the solution of 
spectral singularity moves toward lower frequencies. As ϕV ap-
proaches the upper bound of range at ϕc , the spectral singularity 
solution thus reaches its lowest value at ωc , see e.g. Fig. 2.

3.2. Phase transition-like phenomenon of Faraday rotation angle θ1

For a regular dielectric slab with positive and real permittivity 
(ε > 0 and real), the Faraday rotation angle θ1 must be also real 
and positive. However, in a PT system, the Faraday rotation an-
gle θ1 shows a phase transition-like anomalous behavior, and two 
phases are separated by model parameter ϕV :

(Phase I) for ϕV ∈ [0, π4 ], the value of θ1 is always positive. 
No spectral singularities can be found and PT -symmetric slab be-
haves just as a regular dielectric slab;

(Phase II) for ϕV ∈ [π
4 , π2 ], the value of θ1 may change the 

sign and turn negative. When ϕV ∈ [π
4 , ϕc], the spectral singular-

ities occur and θ1 starts showing negative values. The negative θ1
only show up at large ω region when ϕV ∼ π

4 , and then gradually 
moves toward the lower frequency region as ϕV is increased. As 
ϕV continues increasing up to region of [ϕc, π2 ] that is also free of 
spectral singularities, the negativity of θ1 persists, see e.g. Fig. 3.

Hence, a PT system yields a phase transition-like anomalous 
behavior of Faraday rotation angle θ1, the ϕV = π

4 is the critical 
value that separates the positivity and negativity phases of θ1.

The phase transition-like behavior of θ1 can be understood in-
tuitively by considering limiting case of |V | → ∞,

θ1
|V |→∞→ cos(2ϕV )

g

2n

(
ω|V |
cn0

)2 Z T (ω)

2n

(
kL − sin(2kL)

2

)
. (14)

Now, we can see very clearly that the sign of θ1 is totally deter-
mined by ϕV in this limiting case.
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Fig. 3. Comparison of θ1 of PT -symmetric model with various values of ϕV : ϕV =
0.2π (solid red) and 0.65π (dashed red). The regular θ1 angle (dashed black curve) 
with no complex boundaries by setting V = 0 is also plotted. The parameters are 
taken as: |V | = 0.9, n0 = 1, L = 1, and Z = 0.7.

Fig. 4. Comparison of θ2 of PT -symmetric model with various values of ϕV : ϕV =
0.2π (solid red) and 0.65π (dashed red). The regular θ2 angle (dashed black curve) 
with no complex boundaries by setting V = 0 is also plotted. The parameters are 
taken as: |V | = 0.9, n0 = 1, L = 1, and Z = 0.7.

The anomalous negativity behavior of θ1 can also be illustrated 
analytically at another limiting case by setting V 1 = 0 and ϕV = π

2 ,

θ1
V 1→0→ gT (ω)

2n

2kL+sin(2kL)
2 + Z 2 2kL−sin(2kL)

2 [1 − (ωV 2
cn0

)2]
2n0

. (15)

Both 2kL ± sin(2kL) are positive definite functions, hence as ωV 2
cn0

>

1, the sign of FR angle θ1 changes from positive to negative.

4. Discussion and summary

In summary, using a simple PT -symmetric model with two 
complex δ-potential placed at both boundaries of a regular dielec-
tric slab, we show that FR angles display a phase transition-like 
anomalous behavior. In regular phase, Faraday rotation angles be-
have as normal as in a regular dielectric slab. In anomalous phase, 
FR angle θ1 turns negative, and both angles θ1 and θ2 suffer spec-
tral singularities and yield strong enhancement near singularities
(see Fig. 4). The critical value of phase transition is controlled by 
the parameter of PT -symmetric model. A very similar anomalous 
phase transition-like behavior to FR is expected in reflected light 
(Kerr effect, see e.g. Ref. [37]).

On the contrary to phase transition-like anomalous θ1 behavior 
during transition, angle θ2 doesn’t exhibit the significant change 
of nature except that it also suffers the spectral singularities in 
4

Fig. 5. Behavior of θ1 of PT -symmetric model as ϕV is increased across spectral 
singularities that is located at (ω/c, ϕV ) = (4.73, 0.277π): ϕV = 0.23π (solid red), 
ϕV = 0.277π (solid blue) and ϕV = 0.32π (dashed red). The parameters are taken 
as: |V | = 0.9, n0 = 1, L = 1, and Z = 0.7.

anomalous phase. This can be understood from the definition of θ2
in Eq. (4) and the expression of transmission coefficients in Eq. (7). 
The angle θ2 is an oscillating function regardless that dielectric 
slab is regular or PT -symmetric. In PT systems, the conserva-
tion law of scattering must be generalized, see e.g. Ref. [41], the 
transmission coefficients are no longer bound in range of [0, 1] due 
to the inelasticity functions of PT systems η± ∈ [1, ∞]. However, 
because angle θ2 depends only on the ratio of T± , the oscillating 
nature of θ2 remains unchanged even in PT systems with un-
bound T± . In addition, in both phases, we observe that θ2 vanish 
near frequencies of resonant peaks appeared in θ1. The vanish-
ing θ2 angle represents the purely linearly polarized wave with no 
ellipticity. The angle θ2 also displays the sawtooth behavior: the 
amplitude of angle θ2 keep growing as frequency is increased, and 
it is periodically repeated and changed sharply both in magnitude 
and in sign near the resonance frequencies.

As suggested in Ref. [42], the phase transition-like behavior of 
θ1 is closely related to the motion of the pole of transition ampli-
tudes. Near the pole, the transmission amplitude is approximated 
by

t(ω) ∝ 1

ω − ωpole
, (16)

where ωpole = ωRe + iωIm is the pole position in complex k-plane, 
see Eq. (24) in [42]. The phase of transmission amplitude is domi-
nated by

∂ψ(ω)

∂n
∝ ωIm

(ω − ωRe)2 + ω2
Im

. (17)

The sign of ∂ψ(ω)
∂n is hence dictated by the position of the pole. For 

the regular dielectric slab or in normal phase of PT system, the 
poles remain in unphysical sheet and ωIm > 0. However, in anoma-
lous phase of PT system, poles cross the real axis and move into 
physical sheet with ωIm < 0 and negative ψ near the pole. There-
fore the sign of FR angle θ1 changes as the pole moves across the 
real axis from unphysical to physical sheet, and remains negative 
as long as poles stay in physical sheet. This can be easily illustrated 
in Fig. 5. For the set of model parameters chosen in Fig. 5, one of 
the spectral singularities is located at (ω/c, ϕV ) = (4.73, 0.277π). 
For ϕV value slightly below 0.277π , the pole is located in unphys-
ical sheet, and θ1 remains positive. As ϕV value is increased across 
0.277π , the pole moves across the real axis into physical sheet, 
and hence θ1 changes sign and becomes negative.

We remark that for a simple model, the pole indeed yields 
divergent spectral singularities when it lies on the real axis. As dis-
cussed in Ref. [43], in realistic systems, the divergence of spectral 
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singularities may be regularized by nonlinearities of systems. Sim-
ilarly, the regularization of singularities in a realistic system can 
also be achieved by imperfection of PT systems with a slight im-
balance between the gain and loss regions by adding an infinites-
imal parameter to imaginary part of the right boundary complex 
potential.

At last we remark that the reversal of the sign of the Faraday 
rotation also occurs in some other special cases. For example, in 
Ref. [44], it was shown that near the plasmon resonance of F e2 O 3
nanoparticles solution, the Faraday rotation exhibits both left and 
right rotations for fixed frequencies. The latter is due to the change 
in the sign of the Verdet constant, as a result of increasing the 
thickness of the gold shell with the addition of a gold solution. 
As also mentioned in Ref. [45], the Faraday rotation angle θ1 can 
be increased and even changed its sign using metamaterials to 
adapt the optical properties of the host system. In addition, for the 
frequencies range where both complex permittivity ε and perme-
ability μ have negative non-zero real parts and positive non-zero 
imaginary parts, the real part of n turns out to be negative, see, 
e.g. Ref. [46]. Hence, the angle θ1, which is an odd function with 
respect to the refractive index n, will change the sign as well. As 
for θ2, it is an even function of n and does not change sign when 
n is reversed [37]. The phase transition-like behavior in the change 
of sign of the Faraday rotation angle θ1 in a PT system studied 
in this letter demonstrates a quite different mechanism from the 
cases mentioned above. The phase transition-like anomalous Fara-
day effect may be observed experimentally for the wider range of 
frequencies. Hence PT -systems seem to be ideal candidates for 
constructing fast tunable polarization rotational ultrathin magneto-
optical devices.
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